N36 - Acid Base **Quick Review** # **Acid/Base Definitions** #### **Arrhenius Model** - Acids produce H⁺ in aqueous sol'ns - Bases produce OH⁻ in aqueous sol'ns $$HNO_3 \rightarrow H^+ + NO_3^-$$ $KOH \rightarrow K^+ + OH^-$ #### **Bronsted-Lowry Model** - Acids are proton donors - Bases are proton acceptors #### **Lewis Acid Model** - Acids are electron pair acceptors - Bases are electron pair donors $$NH_3 + HCl \rightleftharpoons NH_4^+ + Cl^-$$ # **Problems with Arrhenius Theory** #### Does not explain why: - Molecular substances, such as NH₃, dissolve in water to form basic solutions, even though they do not contain OH⁻ ions. - How some ionic comp, such as Na₂CO₃ or Na₂O, dissolve in water to form basic sol'ns, even though they dont contain OH - Why molecular substances, such as CO₂, dissolve in water to form acidic solutions, even though they do not contain H⁺ ions. - Acid—base reactions that take place outside aqueous solution. ## Brønsted-Lowry Acid-Base Theory - It defines acids and bases based on what happens in a rxn. - Any reaction involving H⁺ (proton) that transfers from one molecule to another is an acid—base reaction, regardless of whether it occurs in aqueous solution or if there is OH⁻ present. - All reactions that fit the Arrhenius definition also fit the Brønsted–Lowry definition. ## **Brønsted-Lowry Theory** In a Brønsted–Lowry acid–base reaction, the acid molecule donates an H⁺ to the base molecule. $$H-A + :B \Leftrightarrow :A^- + H-B^+$$ $$NH_3 + HCl \rightleftharpoons NH_4^+ + Cl^-$$ - The acid is an H⁺ donor. - The base is an H⁺ acceptor. - Base structure must contain an atom with an unshared pair of electrons. # **Brønsted-Lowry Acids** - H⁺ donors. - Any material that has H can potentially be a Brønsted-Lowry acid. - Because of the molecular structure, often one H in the molecule is easier to transfer than others. - When HCl dissolves in water, the HCl is the acid because HCl transfers an H⁺ to H₂O, forming H₃O⁺ ions. - Water acts as base, accepting H⁺. $$HCI(aq) + H_2O(I) \rightarrow CI^-(aq) + H_3O^+(aq)$$ Acid Base # **Amphoteric Substances** Amphoteric substances can act as either an acid or a base because they have both a transferable H and an atom with lone pair electrons. Water acts as base, accepting H⁺ from HCl. $$HCI(aq) + H_2O(I) \leftrightarrow CI^-(aq) + H_3O^+(aq)$$ Water acts as acid, donating H⁺ to NH₃. $$NH_3(aq) + H_2O(I) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$ # Conjugate Acid-Base Pairs The original base becomes an acid in the reverse reaction. The original acid becomes a base in the reverse process. Each reactant and the product it becomes is called a conjugate pair # **Conjugate Pairs** $$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$ Base Acid Conjugate Conjugate base A base accepts a proton and becomes a conjugate acid. An acid donates a proton and becomes a conjugate base. ## **Acid Dissociation** $$K_a = \frac{[H^+][A^-]}{[HA]}$$ Alternately, H⁺ may be written in its hydrated form, H₃O⁺ (hydronium ion) # **Dissociation of Strong Acids** Strong acids are assumed to dissociate completely in solution. Large K_a or small K_a ? Large K_a Reactant favored or product favored? Product Favored # **Dissociation Constants: Strong Acids** | Acid | Formula | Conjugate
Base | K _a | |---------------|--------------------------------|--------------------|----------------| | Perchloric | HCIO ₄ | CIO ₄ - | Very large | | Hydriodic | HI | - | Very large | | Hydrobromic | HBr | Br⁻ | Very large | | Hydrochloric | HCI | Cl ⁻ | Very large | | Nitric | HNO ₃ | NO ₃ - | Very large | | Sulfuric | H ₂ SO ₄ | HSO ₄ - | Very large | | Hydronium ion | H ₃ O+ | H ₂ O | 1.0 | ## **Dissociation of Weak Acids** Weak acids are assumed to dissociate only slightly (less than 5%) in solution. Large K_a or small K_a ? Small K_a Reactant favored or product favored? Reactant Favored ## **Dissociation Constants: Weak Acids** | Acid | Formula | Conjugate Base | K _a | |--------------|------------------------------------|------------------------------------|-------------------------| | lodic | HIO ₃ | 10 ₃ - | 1.7 x 10 ⁻¹ | | Oxalic | $H_2C_2O_4$ | HC ₂ O ₄ - | 5.9 x 10 ⁻² | | Sulfurous | H ₂ SO ₃ | HSO ₃ - | 1.5 x 10 ⁻² | | Phosphoric | H ₃ PO ₄ | H ₂ PO ₄ - | 7.5 x 10 ⁻³ | | Citric | $H_3C_6H_5O_7$ | $H_2C_6H_5O_7^{-1}$ | 7.1 x 10 ⁻⁴ | | Nitrous | HNO ₂ | NO ₂ - | 4.6 x 10 ⁻⁴ | | Hydrofluoric | HF | F- | 3.5 x 10 ⁻⁴ | | Formic | НСООН | HCOO- | 1.8 x 10 ⁻⁴ | | Benzoic | C ₆ H ₅ COOH | C ₆ H ₅ COO- | 6.5 x 10 ⁻⁵ | | Acetic | CH ₃ COOH | CH ₃ COO- | 1.8 x 10 ⁻⁵ | | Carbonic | H ₂ CO ₃ | HCO ₃ - | 4.3 x 10 ⁻⁷ | | Hypochlorous | HCIO | CIO- | 3.0 x 10 ⁻⁸ | | Hydrocyanic | HCN | CN ⁻ | 4.9 x 10 ⁻¹⁰ | #### **Self-Ionization of Water** $$H_{2}O + H_{2}O + GH^{-}$$ $$H_{3}O^{+} + OH^{-}$$ At 25°, $$[H_3O^+] = [OH^-] = 1 \times 10^{-7}$$ #### K_w is a constant at 25 °C: $$K_w = [H_3O^+][OH^-]$$ $K_w = (1 \times 10^{-7})(1 \times 10^{-7}) = 1 \times 10^{-14}$ ## Calculating pH, pOH $$pH = -log_{10}(H_3O^+)$$ $pOH = -log_{10}(OH^-)$ #### Relationship between pH and pOH $$pH + pOH = 14$$ # Finding [H₃O⁺], [OH⁻] from pH, pOH $$[H_3O^+] = 10^{-pH}$$ $$[OH^{-}] = 10^{-pOH}$$ # pH and pOH Calculations # pH Scale Courtesy of Environment Canada (http://www.ns.ec.dc.ca/).