N36 - Acid Base

Quick Review

Acid/Base Definitions

Arrhenius Model

- Acids produce H⁺ in aqueous sol'ns
- Bases produce OH⁻ in aqueous sol'ns

$$HNO_3 \rightarrow H^+ + NO_3^-$$

 $KOH \rightarrow K^+ + OH^-$

Bronsted-Lowry Model

- Acids are proton donors
- Bases are proton acceptors

Lewis Acid Model

- Acids are electron pair acceptors
- Bases are electron pair donors

$$NH_3 + HCl \rightleftharpoons NH_4^+ + Cl^-$$

Problems with Arrhenius Theory

Does not explain why:

- Molecular substances, such as NH₃, dissolve in water to form basic solutions, even though they do not contain OH⁻ ions.
- How some ionic comp, such as Na₂CO₃ or Na₂O, dissolve in water to form basic sol'ns, even though they dont contain OH
- Why molecular substances, such as CO₂, dissolve in water to form acidic solutions, even though they do not contain H⁺ ions.
- Acid—base reactions that take place outside aqueous solution.

Brønsted-Lowry Acid-Base Theory

- It defines acids and bases based on what happens in a rxn.
- Any reaction involving H⁺ (proton) that transfers from one molecule to another is an acid—base reaction, regardless of whether it occurs in aqueous solution or if there is OH⁻ present.
- All reactions that fit the Arrhenius definition also fit the Brønsted–Lowry definition.

Brønsted-Lowry Theory

In a Brønsted–Lowry acid–base reaction, the acid molecule donates an H⁺ to the base molecule.

$$H-A + :B \Leftrightarrow :A^- + H-B^+$$

$$NH_3 + HCl \rightleftharpoons NH_4^+ + Cl^-$$

- The acid is an H⁺ donor.
- The base is an H⁺ acceptor.
 - Base structure must contain an atom with an unshared pair of electrons.

Brønsted-Lowry Acids

- H⁺ donors.
 - Any material that has H can potentially be a Brønsted-Lowry acid.
 - Because of the molecular structure, often one H in the molecule is easier to transfer than others.

- When HCl dissolves in water, the HCl is the acid because HCl transfers an H⁺ to H₂O, forming H₃O⁺ ions.
 - Water acts as base, accepting H⁺.

$$HCI(aq) + H_2O(I) \rightarrow CI^-(aq) + H_3O^+(aq)$$
Acid Base

Amphoteric Substances

Amphoteric substances can act as either an acid or a base because they have both a transferable H and an atom with lone pair electrons.

Water acts as base, accepting H⁺ from HCl.

$$HCI(aq) + H_2O(I) \leftrightarrow CI^-(aq) + H_3O^+(aq)$$

Water acts as acid, donating H⁺ to NH₃.

$$NH_3(aq) + H_2O(I) \leftrightarrow NH_4^+(aq) + OH^-(aq)$$

Conjugate Acid-Base Pairs

The original base becomes an acid in the reverse reaction.

The original acid becomes a base in the reverse process.

Each reactant and the product it becomes is called a

conjugate pair

Conjugate Pairs

$$NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$$

Base Acid Conjugate Conjugate base

A base accepts a proton and becomes a conjugate acid.

An acid donates a proton and becomes a conjugate base.

Acid Dissociation

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

Alternately, H⁺ may be written in its hydrated form, H₃O⁺ (hydronium ion)

Dissociation of Strong Acids

Strong acids are assumed to dissociate completely in solution.

Large K_a or small K_a ?

Large K_a

Reactant favored or product favored?

Product Favored

Dissociation Constants: Strong Acids

Acid	Formula	Conjugate Base	K _a
Perchloric	HCIO ₄	CIO ₄ -	Very large
Hydriodic	HI	 -	Very large
Hydrobromic	HBr	Br⁻	Very large
Hydrochloric	HCI	Cl ⁻	Very large
Nitric	HNO ₃	NO ₃ -	Very large
Sulfuric	H ₂ SO ₄	HSO ₄ -	Very large
Hydronium ion	H ₃ O+	H ₂ O	1.0

Dissociation of Weak Acids

Weak acids are assumed to dissociate only slightly (less than 5%) in solution.

Large K_a or small K_a ?

Small K_a

Reactant favored or product favored?

Reactant Favored

Dissociation Constants: Weak Acids

Acid	Formula	Conjugate Base	K _a
lodic	HIO ₃	10 ₃ -	1.7 x 10 ⁻¹
Oxalic	$H_2C_2O_4$	HC ₂ O ₄ -	5.9 x 10 ⁻²
Sulfurous	H ₂ SO ₃	HSO ₃ -	1.5 x 10 ⁻²
Phosphoric	H ₃ PO ₄	H ₂ PO ₄ -	7.5 x 10 ⁻³
Citric	$H_3C_6H_5O_7$	$H_2C_6H_5O_7^{-1}$	7.1 x 10 ⁻⁴
Nitrous	HNO ₂	NO ₂ -	4.6 x 10 ⁻⁴
Hydrofluoric	HF	F-	3.5 x 10 ⁻⁴
Formic	НСООН	HCOO-	1.8 x 10 ⁻⁴
Benzoic	C ₆ H ₅ COOH	C ₆ H ₅ COO-	6.5 x 10 ⁻⁵
Acetic	CH ₃ COOH	CH ₃ COO-	1.8 x 10 ⁻⁵
Carbonic	H ₂ CO ₃	HCO ₃ -	4.3 x 10 ⁻⁷
Hypochlorous	HCIO	CIO-	3.0 x 10 ⁻⁸
Hydrocyanic	HCN	CN ⁻	4.9 x 10 ⁻¹⁰

Self-Ionization of Water

$$H_{2}O + H_{2}O + GH^{-}$$

$$H_{3}O^{+} + OH^{-}$$

At 25°,
$$[H_3O^+] = [OH^-] = 1 \times 10^{-7}$$

K_w is a constant at 25 °C:

$$K_w = [H_3O^+][OH^-]$$
 $K_w = (1 \times 10^{-7})(1 \times 10^{-7}) = 1 \times 10^{-14}$

Calculating pH, pOH

$$pH = -log_{10}(H_3O^+)$$

 $pOH = -log_{10}(OH^-)$

Relationship between pH and pOH

$$pH + pOH = 14$$

Finding [H₃O⁺], [OH⁻] from pH, pOH

$$[H_3O^+] = 10^{-pH}$$

$$[OH^{-}] = 10^{-pOH}$$

pH and pOH Calculations

pH Scale

Courtesy of Environment Canada (http://www.ns.ec.dc.ca/).